452 research outputs found

    A tale of two stories: data-driven precision medicine and precision public health

    Get PDF
    Big Data offers opportunities in health care to refine individuals’ characterization and thus complement traditional precision medicine approaches toward individual-targeted prevention, diagnosis and treatment management. Not surprisingly, network theory plays a vital role in modelling Big Data: the higher the number of measurements, the higher the number of potential relationships or dependencies among them. Recent developments have shown the complementary value of personalizing population-based networks for individuals (Menche et al. 2017, Dimitrakopoulos et al. 2018) or deriving individualspecific networks via populations of cells (Gosak et al. 2018, Li et al. 2023). Individual-specific networks do not necessarily require repeated measurements over time or in space. Reverse-engineered individual-specific networks (Kuijjer et al. 2019) from an aggregate network (hereafter referred to as ISNs) allow for investigating the impact of individual-level network wirings, paths or connectivity on medical decision-making in the individual’s interest. Wondering about the utility of these ISNs, we illustrate by example from microbiome and gene co-expression experiments how ISNs give complementary insights in dynamic network biomarker identification and can reveal (genetic modifiers of) co-eQTLs as direct or indirect regulators of gene co-expression.Book of abstract: 4th Belgrade Bioinformatics Conference, June 19-23, 202

    Integration of Gene Expression and Methylation to unravel Biological Networks in Glioblastoma Patients

    Full text link
    peer reviewedThe vast amount of heterogeneous omics data, encompassing a broad range of biomolecular information, requires novel methods of analysis, including those that integrate the available levels of information. In this work we describe Regression2Net, a computational approach that is able to integrate gene expression and genomic or methylome data in two steps. First, penalized regressions are used to build Expression-Expression (EEnet) and Expression-Genome or –Methylome (EMnet) networks. Second, network theory is used to highlight important communities of genes. When applying our approach Regression2Net to gene expression and methylation profiles for individuals with glioblastoma multiforme, we identified respectively 284 and 447 potentially interesting genes in relation to glioblastoma pathology. These genes showed at least one connection in the integrated networks ANDnet and XORnet derived from aforementioned EEnet and EMnet networks. Whereas the edges in ANDnet occur in both EEnet and EMnet, the edges in XORnet occur in EMnet but not in EEnet. In-depth biological analysis of connected genes in ANDnet and XORnet revealed genes that are related to energy metabolism, cell cycle control (AATF), immune system response and several cancer types. Importantly, we observed significant over-representation of cancer related pathways including glioma, especially in the XORnet network, suggesting a non-ignorable role of methylation in glioblastoma multiforma. In the ANDnet, we furthermore identified potential glioma suppressor genes ACCN3 and ACCN4 linked to the NBPF1 neuroblastoma breakpoint family, as well as numerous ABC transporter genes (ABCA1, ABCB1) suggesting drug resistance of glioblastoma tumors

    A cautionary note on the impact of protocol changes for Genome-Wide Association SNP x SNP Interaction studies: an example on ankylosing spondylitis

    Full text link
    Genome-wide association interaction (GWAI) studies have increased in popularity. Yet to date, no standard protocol exists. In practice, any GWAI workflow involves making choices about quality control strategy, SNP filtering, linkage disequilibrium (LD) pruning, analytic tool to model or to test for genetic interactions. Each of these can have an impact on the final epistasis findings and may affect their reproducibility in follow-up analyses. Choosing an analytic tool is not straightforward, as different such tools exist and current understanding about their performance is based on often very particular simulation settings. In the present study, we wish to create awareness for the impact of (minor) changes in a GWAI analysis protocol can have on final epistasis findings. In particular, we investigate the influence of marker selection and marker prioritization strategies, LD pruning and the choice of epistasis detection analytics on study results, giving rise to 8 GWAI protocols. Discussions are made in the context of the ankylosing spondylitis (AS) data obtained via the Wellcome Trust Case Control Consortium (WTCCC2). As expected, the largest impact on AS epistasis findings is caused by the choice of marker selection criterion, followed by marker coding and LD pruning. In MB-MDR, co-dominant coding of main effects is more robust to the effects of LD pruning than additive coding. We were able to reproduce previously reported epistasis involvement of HLA-B and ERAP1 in AS pathology. In addition, our results suggest involvement of MAGI3 and PARK2, responsible for cell adhesion and cellular trafficking. Gene Ontology (GO) biological function enrichment analysis across the 8 considered GWAI protocols also suggested that AS could be associated to the Central Nervous System (CNS) malfunctions, specifically, in nerve impulse propagation and in neurotransmitters metabolic processes

    A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection

    Get PDF
    Background: Applying a statistical method implies identifying underlying (model) assumptions and checking their validity in the particular context. One of these contexts is association modeling for epistasis detection. Here, depending on the technique used, violation of model assumptions may result in increased type I error, power loss, or biased parameter estimates. Remedial measures for violated underlying conditions or assumptions include data transformation or selecting a more relaxed modeling or testing strategy. Model-Based Multifactor Dimensionality Reduction (MB-MDR) for epistasis detection relies on association testing between a trait and a factor consisting of multilocus genotype information. For quantitative traits, the framework is essentially Analysis of Variance (ANOVA) that decomposes the variability in the trait amongst the different factors. In this study, we assess through simulations, the cumulative effect of deviations from normality and homoscedasticity on the overall performance of quantitative Model-Based Multifactor Dimensionality Reduction (MB-MDR) to detect 2-locus epistasis signals in the absence of main effects. Methodology: Our simulation study focuses on pure epistasis models with varying degrees of genetic influence on a quantitative trait. Conditional on a multilocus genotype, we consider quantitative trait distributions that are normal, chi-square or Student's t with constant or non-constant phenotypic variances. All data are analyzed with MB-MDR using the built-in Student's t-test for association, as well as a novel MB-MDR implementation based on Welch's t-test. Traits are either left untransformed or are transformed into new traits via logarithmic, standardization or rank-based transformations, prior to MB-MDR modeling. Results: Our simulation results show that MB-MDR controls type I error and false positive rates irrespective of the association test considered. Empirically-based MB-MDR power estimates for MB-MDR with Welch's t-tests are generally lower than those for MB-MDR with Student's t-tests. Trait transformations involving ranks tend to lead to increased power compared to the other considered data transformations. Conclusions: When performing MB-MDR screening for gene-gene interactions with quantitative traits, we recommend to first rank-transform traits to normality and then to apply MB-MDR modeling with Student's t-tests as internal tests for association

    netANOVA: novel graph clustering technique with significance assessment via hierarchical ANOVA.

    Full text link
    peer reviewedMany problems in life sciences can be brought back to a comparison of graphs. Even though a multitude of such techniques exist, often, these assume prior knowledge about the partitioning or the number of clusters and fail to provide statistical significance of observed between-network heterogeneity. Addressing these issues, we developed an unsupervised workflow to identify groups of graphs from reliable network-based statistics. In particular, we first compute the similarity between networks via appropriate distance measures between graphs and use them in an unsupervised hierarchical algorithm to identify classes of similar networks. Then, to determine the optimal number of clusters, we recursively test for distances between two groups of networks. The test itself finds its inspiration in distance-wise ANOVA algorithms. Finally, we assess significance via the permutation of between-object distance matrices. Notably, the approach, which we will call netANOVA, is flexible since users can choose multiple options to adapt to specific contexts and network types. We demonstrate the benefits and pitfalls of our approach via extensive simulations and an application to two real-life datasets. NetANOVA achieved high performance in many simulation scenarios while controlling type I error. On non-synthetic data, comparison against state-of-the-art methods showed that netANOVA is often among the top performers. There are many application fields, including precision medicine, for which identifying disease subtypes via individual-level biological networks improves prevention programs, diagnosis and disease monitoring

    MB-MDR: Model-Based Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic data

    Get PDF
    L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta

    Lower-Order Effects Adjustment in Quantitative Traits Model-Based Multifactor Dimensionality Reduction

    Get PDF
    Identifying gene-gene interactions or gene-environment interactions in studies of human complex diseases remains a big challenge in genetic epidemiology. An additional challenge, often forgotten, is to account for important lower-order genetic effects. These may hamper the identification of genuine epistasis. If lower-order genetic effects contribute to the genetic variance of a trait, identified statistical interactions may simply be due to a signal boost of these effects. In this study, we restrict attention to quantitative traits and bi-allelic SNPs as genetic markers. Moreover, our interaction study focuses on 2-way SNP-SNP interactions. Via simulations, we assess the performance of different corrective measures for lower-order genetic effects in Model-Based Multifactor Dimensionality Reduction epistasis detection, using additive and co-dominant coding schemes. Performance is evaluated in terms of power and familywise error rate. Our simulations indicate that empirical power estimates are reduced with correction of lower-order effects, likewise familywise error rates. Easy-to-use automatic SNP selection procedures, SNP selection based on “top” findings, or SNP selection based on p-value criterion for interesting main effects result in reduced power but also almost zero false positive rates. Always accounting for main effects in the SNP-SNP pair under investigation during Model-Based Multifactor Dimensionality Reduction analysis adequately controls false positive epistasis findings. This is particularly true when adopting a co-dominant corrective coding scheme. In conclusion, automatic search procedures to identify lower-order effects to correct for during epistasis screening should be avoided. The same is true for procedures that adjust for lower-order effects prior to Model-Based Multifactor Dimensionality Reduction and involve using residuals as the new trait. We advocate using “on-the-fly” lower-order effects adjusting when screening for SNP-SNP interactions using Model-Based Multifactor Dimensionality Reduction analysis

    Genome-wide environmental interaction analysis using multidimensional data reduction principles to identify asthma pharmacogenetic loci in relation to corticosteroid therapy

    Full text link
    Genome-wide gene-environment (GxE) and gene-gene (GxG) interaction studies share a lot of challenges via the common genetic component they involve. GWEI studies may therefore benefit from the abundance of methodologies that are available in the context of genome-wide epistasis detection methods. One of these is Model-Based Multifactor Dimensionality Reduction (MB-MDR), which does not make any assumption about the genetic inheritance model. MB-MDR involves reducing a high-dimensional GxE space to GxE factor levels that either exhibit high or low or no evidence for their association to disease outcome. In contrast to logistic regression and random forests, MB-MDR can be used to detect GxE interactions in the absence of any main effects or when sample sizes are too small to be able to model all main and GxE interaction effects. In this ongoing study, we demonstrate the opportunities and challenges of MB-MDR for genome-wide GxE interaction analysis and analyzed the difference in prebronchodilator FEV1 following 8 weeks of inhaled corticosteroid therapy, for 565 pediatric Caucasian CAMP (ages 5-12) from the SHARE project
    corecore